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Abstract. We calculate the mutual information (MI) of a two-layered neural network with
noiseless, continuous inputs and binary, stochastic outputs under several assumptions on the
synaptic efficiencies. The interesting regime corresponds to the limit where the number of both
input and output units is large but their ratio is kept fixed at a valueα. We first present a solution
for the MI using the replica technique with a replica symmetric (RS) ansatz. Then we find an exact
solution for this quantity valid in a neighbourhood ofα = 0. An analysis of this solution shows that
the system must have a phase transition at some finite value ofα. This transition shows a singularity
in the third derivative of the MI. As the RS solution turns out to be infinitely differentiable, it could
be regarded as a smooth approximation to the MI. This is checked numerically in the validity
domain of the exact solution.

1. Introduction

The aim of this work is to study the properties of a binary communication channel processing
data from a Gaussian source, when the output state is stochastic. The architecture is a two-
layered feedforward neural network withN analogue input units andP binary output units.
The mutual information (MI) is evaluated in the largeN limit with α = P

N
fixed. Research

in this direction was previously done in [1], where the case of a noiseless binary channel was
studied, and in [2] which dealt with the case of a Gaussian source corrupted with input noise.

The main motivation of this work is a technical one. In [1] and [2] the MI of binary
channels was obtained by means of the replica technique and the replica symmetry ansatz
(RSA) [3]. However, there have not been attempts to show the validity of this solution. In this
paper we give an analytical solution of the MI of the channel without making use of the replica
technique. In order to compare both methods, the RSA solution of a general stochastic binary
channel is also evaluated. While the RSA yields an expression of the MI for all values ofα,
the exact analytical solution turns out to be valid only up to someα = O(1). However, our
conclusion is that the correct solution is the analytical one and that there is a (possibly large
order) phase transition located at the value ofα where the analytical solution ceases to be valid.
The RSA solution has to be regarded just as a smooth approximation to the MI, interpolating
between the correct small and largeα regimes.

There are several other motivations for doing this investigation. Once the MI of the channel
is known, the problem of extracting as much information as possible from the inputs can be
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addressed. This optimization problem leads to interesting data analysis. Optimizing the MI, a
criterion known as the ‘infomax’ principle [4], is a way of unsupervised learning (see, e.g., [5]).
The parameters of the model (that is, of the channel) adapt according to this principle and in this
way they learn the statistics of the environment (that is, of the source). One can also optimize
the MI by adapting the transfer function itself [6,7]. Another form of this type of unsupervised
learning is the minimum redundancy criterion [8]. Both have been used to predict the receptive
fields of the early visual system [9–12]. The relation between them has been discussed in [7].
Another motivation is that learning how to solve this particular nonlinear channel could provide
the techniques to deal with other type of nonlinearities. Little is known on the properties
of systems other than linear, except for threshold-linear networks [13–15] (treated with the
replica technique), approximations for weak nonlinear terms in the processing [16], some
general properties of the low and large noise limits [7,17] and an analytical treatment of binary
communication channels, either noiseless [1] or with an input noise [2].

This paper is organized in the following way. The model is explained in section 2, where
the notation and the relevant quantities are also given. In section 3, the exact calculation of one
of the contributions to the MI (the ‘equivocation’ term, see [18]) is presented. In section 4 the
evaluation of the other contribution to MI (the entropy term) is discussed. In section 4.1, this is
done by the usual replica technique. The exact solution is obtained in section 4.2. In section 5
the RS expression of the MI is analysed in several asymptotic regimes; a numerical analysis
of the RSA solution is also presented at the end of this section. The comparison between
the exact and the RSA solutions is made in section 6. A discussion about the existence of
a phase transition is given in section 7. Section 8 is devoted to the analysis of the replica
symmetry breaking (RSB) solutions. The conclusions are contained in section 9. Finally,
several technical questions are presented in the appendices.

2. The model

We consider a two-layered neural network withN inputs Eξ ∈ ReN andP binary outputs
Ev ∈ (Z2)

P . The input vectorEξ is distributed as a Gaussian with zero mean and covariance
matrixC ∈ MN×N(Re):

ρ(Eξ) = e−
1
2
Eξ(C)−1Eξ t

√
det(2πC)

. (1)

The feedforward connections are denoted by the matrixJ ∈ MP×N(Re) and its matrix
elements by{Jij }(i = 1, . . . , P ; j = 1 . . . , N). Instead of considering a fixed matrix we
prefer to compute the average MI over an ensemble of stochastic binary channels. The{Jij }
have also a Gaussian distribution, with zero mean value and two-point correlationsΓ:

〈〈JijJi ′j ′ 〉〉 = δii ′0jj ′ (2)

where the double angular brackets indicate the average over the channel ensemble andΓ ∈
MN×N(Re) . Notice that those connections converging to different outputs are independently
distributed. The coupling matrixJ can be also regarded asP randomN -dimensional vectors
EJi(i = 1, . . . , P ) given by the rows ofJ . From equation (2), we have that each of these rows
is distributed independently as:

ρ( EJi) = e−
1
2
EJi (Γ)−1 EJ ti√

det(2πΓ)
. (3)

Let us now define the local field asEh = J Eξ . The output state is computed by
means of the probability distribution℘(Ev |Eh ) that the output vector isEv for a given local
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field Eh. Most interesting problems have a factorized output distribution; we will then
assume that℘(Ev|Eh) = ∏P

i=1℘(vi |hi). We will also require the reasonable condition that
℘(vi |hi) = fβ(hivi) (β denotes an output noise parameter), wherefβ(x) is an arbitrary
function satisfying 06 fβ(x) < 1 andfβ(x) + fβ(−x) = 1.

Both the replica and the exact calculations will be done for any of thosef (x). However,
we will study with some detail the case (to be referred to as the hyperbolic tangent transfer
(HTT) function):

f (x) = eβx

eβx + e−βx
= 1

2
(1 + tanh(βx)). (4)

The deterministic channel [1] is obtained either whenf (x) is chosen as the Heaviside
functionθ or in the largeβ limit of the HTT function.

Let us now define the mutual informationI (Ev, Eξ |J) [18–20] between the input and output
vectors, given the channel parametersJ†:

I (Ev, Eξ |J) =
∑
Ev,Eξ
℘ (Ev, Eξ |J) log

℘(Ev, Eξ |J)
℘ (Ev|J)ρ(Eξ) (5)

where℘(Ev|J) is the output vector distribution givenJ . The joint probability℘(Ev, Eξ |J) can
be written as

℘(Ev, Eξ |J) = ρ(Eξ)℘ (Ev|Eξ,J) (6)

where℘(Ev|Eξ,J) denotes the conditional distribution of the output vectorEv given the inputEξ
and the channelJ . Since the relation between the input and the local fieldEh is deterministic,
it can be substituted by℘(Ev|Eh).

First we need to define the output entropy for fixed couplingsJ :

H(Ev|J) = −
∑
Ev
℘ (Ev|J) log℘(Ev|J) (7)

and the entropy of the output conditioned by the inputEξ , again for fixed couplings (the
equivocation term):

H(Ev|Eξ,J) = −
∫

dN Eξ ρ(Eξ)
∑
Ev
℘ (Ev|Eξ,J) log℘(Ev|Eξ,J). (8)

Then the MI can be expressed as

I (Ev, Eξ |J) = H(Ev|J)−H(Ev|Eξ,J). (9)

We are interested in the mutual informationI = 〈〈I (Ev, Eξ |J)〉〉 averaged over the channel
ensemble. Then, callingI1 = 〈〈H(Ev|J)〉〉 andI2 = 〈〈H(Ev|Eξ,J)〉〉, we haveI = I1 − I2, or in
terms of MI per input unit,i = i1− i2, wherei1 = I1

N
andi2 = I2

N
.

Each term will be studied separately. In the next section we compute the equivocation
term I2. This can be obtained exactly by means of simple arguments. The output entropy
term requires more care. It will be evaluated in section 4.1 using the replica technique and in
section 4.2 using exact analytical methods.

† In equation (5) and hereafter, log(x) ≡ ln(x)
ln 2 . In the derivations, however, we make use of ln(x) because of the

Taylor expansions.
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3. The equivocation termI2

Since℘(Ev|Eξ,J) factorizes, it is convenient to define the single output entropy,H(hi), which
is afunctionof hi :

H(hi) = −
∑
vi=±1

℘(vi |hi) ln℘(vi |hi) (10)

where one should keep in mind thatEh = J Eξ . Then:

H(Ev|Eξ,J) =
P∑
i=1

∫
dN Eξ ρ(Eξ)H(hi) (11)

and

I2 =
P∑
i=1

∫
dJ ρ(J)

∫
dN Eξ ρ(Eξ)H(hi). (12)

I2 can be easily evaluated in several simple examples. In the deterministic case it is zero.
In the large noise limit (β → 0) it reaches its upper boundI2 = P ln 2. For the HTT function,
equation (4), we haveH(h) = ln (eβh + e−βh)−βh tanhβh, and this single output entropy can
be substituted in equation (12) to obtainI2. In appendix A the details of such calculation are
presented; here we recall the final formula equation (58), valid for a matrixM = ΓC having
all its eigenvalues of the same order and any functionH(h). The equivocation termper input
unit is then:

i2 = α
∫ ∞
−∞

dz
e−z

2

√
π
H(
√

2M̄z) (13)

with M̄ = Tr(M) (the trace ofM ). For the sigmoidal HTT function, we obtain:

i2 = α
∞∑
m=1

(−1)m+1Am (14)

where

Am = 2β0√
π

+

(
1

m
− 2mβ2

0

)
(1− erf(mβ0))e

m2β2
0 (15)

andβ0 =
√

2M̄ β, which we shall call thereduced noise parameter. Alternatively, we will
also use thereduced temperatureT0 = β0

−1. The symbol erf(x) stands for the error function.
One can easily obtain several limits. For smallT0:

i2 ≈ απ
3/2

6
T0 (16)

where one observes thati2 grows linearly withT0. For smallβ0,

i2 ≈ α ln 2− α
4
β2

0 . (17)

In this casei2 departs fromα ln 2 quadratically withβ0.
For other transfer functions one obtains the same qualitative result, although with different

coefficients. This is simply because these coefficients depend on the derivatives of the transfer
function in the neighbourhood ofβ = 0 andβ = ∞, respectively.
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4. Calculation of I1

We now compute the output entropy term defined in equation (7). First we notice that the
(discrete) probability density of the outputsEv is given by:

℘Ev ≡ ℘(Ev|J) =
∫

dN Eξ ρ(Eξ)℘ (Ev|Eξ,J). (18)

Since℘Ev is a probability density,
∑
Ev ℘Ev = 1 and so

I1 = − lim
n→0

∑
Ev〈〈℘n+1

Ev 〉〉 − 1

n
. (19)

〈〈℘n+1
Ev 〉〉 can be written in terms of replicated variables{Eξa}, a = 0, 1, . . . , n in the following

way:

〈〈℘n+1
Ev 〉〉 =

∫
dJ ρ(J)

∫ n∏
a=0

[
dNEξaρEξ (Eξa)

P∏
i=1

f (vih
a
i )

]
. (20)

Here the local fields are:

hai =
N∑
j=1

Jij ξ
a
j . (21)

We will only compute the integer order moments of℘Ev. The continuous order moments
will be obtained by naive extrapolation of them. Actually they can be obtained in a completely
rigorous way (although in a rather complicated fashion) because the integer moments contain
enough information to reconstruct the probability distribution of the variable℘Ev.

It is obvious from the distribution ofJ that each elementJij is independent of the others
with different output indexi. Using this and the fact that eachEJi has an even distribution
(Gaussian) we have that〈〈℘n+1

Ev 〉〉 is independent ofEv. Thus we can write:

I1 = −2P 〈〈℘n+1〉〉 − 1

n
n→ 0 (22)

where℘ stands for the conditional distribution℘Ev with a specific choice ofEv , e.g.vi = +1, i =
1, . . . , P .

In equation (20) we can apply, for almost everyJ , the Bessel–Plancherel identity in each
of the integrals over theEξa:∫

dN Eξa e−
1
2
Eξat (C)−1Eξa

√
det(2πC)

P∏
i=1

f (hai ) =
∫

dP Eua e−2π2Euat∆Eua
P∏
i=1

f̂ (uai ). (23)

The functionf̂ is the Fourier transform off and must be understood in the distributional sense,
and∆ = JCJ t . This expression holds for any value ofP andN (see appendix B for details).
Then, the characteristic function̂ρ({Eua}a=0,...,n) associated to the joint probability distribution
of the replicated local fields,ρ({Eha}a=0,...,n) is:

ρ̂({Eua}all a) = e−
1
2

∑N
j=1 ln det(IdP×P +4π2mjU) (24)

where the matrixU is the sum of all the projectors associated to each replica vector,

Uii ′ =
n∑
a=0

uai u
a
i ′ . (25)

From equations (20) and (23) we obtain the following result:

〈〈℘n+1〉〉 =
∫ n∏

a=0

dP Euaρ̂({Eua})
n∏
a=0

P∏
i=1

f̂ (uai ). (26)
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This formula is exact for the moments of integer order of℘. This will be the starting point
of section 4.2, where we will calculate the moments of℘ exactly. Before that we present the
RSA solution.

4.1. The RSA approach

After a rather lengthy algebra we obtain the entropy termI1 . Some details of the calculation
are described in appendix C; here we only give the final result.I1 is a function of two order
parameters, here calledx ands. Its value per input unit is given by:

iRSA1 = αR(x) +
1

2
τ [ln (IdN×N + sG)] − s

2(x + 1)
(27)

whereG is the normalized matrix,G = NM
M̄

. We have made use of the symbolτ for a

normalized trace operator,τ(·) = 1
N

Tr(·). The order parameters satisfy the self-consistent SP
equations:

x = sτ
(

G2

IdN×N + sG

)
/τ

(
G

IdN×N + sG

)
s = −2α(x + 1)2

dR

dx
.

(28)

The functionR(x) is the average entropy of an effective transfer functiongx defined as:

gx(y) = 1√
π

∫ ∞
−∞

dw e−(w+y)2f

√ 2M̄

1 +x
w

 . (29)

More precisely,

R(x) = 1√
π

∫ ∞
−∞

dy e−y
2
S(gx(

√
xy)) (30)

whereS(z) is the entropy of a binary probability, i.e.,

S(z) = −z ln z− (1− z) ln (1− z). (31)

It is worth noting that for the deterministic casegx(y) = 1
2(1 + erf(y)), and for the fully

random casegx(y) = 1
2. In the deterministic case, there is a simple relation between our

parameters and those (q andq̂) used in [1]: q̂ = s andq = x
1+x . We prefer to usex instead of

q because it usually yields simpler expressions.

4.2. The exact solution

In this section we present an exact evaluation ofI1 valid for α 6 αc, whereαc is of order one.
It is necessary to assume that all the eigenvalues ofM = ΓC are of the same order. The
details of the calculation are presented in appendix D; we only give here the final result for the
moments:

〈〈℘n+1〉〉 = 2−P(n+1)e−
1
2 Tr[ln (IdN×N− 2

π
k2nαG)]e−

n
2 Tr[ln (IdN×N+ 2

π
k2αG)] (32)

wherek is defined as:

k =
∫ ∞
−∞

dy ye−
y2

2 f (
√
M̄y). (33)
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Let us now extrapolate equation (32) to non-integern. This gives our analytical estimate ofi1:

ian1 = −
1

N
lim
n→0

2−P(n+1)〈〈℘n+1〉〉 − 1

n

= α ln 2− k
2

π
α +

1

2
τ

[
ln (IdN×N +

2k2

π
αG)

]
. (34)

The numerical constantk is real-valued, and it is expected to be of order one. In fact, the
maximum ofk is reached in the deterministic case (f (x) = θ(x) ). This givesk = 1,
independent ofM̄. Notice that the minimum ofk is reached byf (x) = θ(−x), giving
k = −1. The minimum ofk2 is realized byf (x) = 1

2, which givesk = 0.
The computation performed in this section (equation (32)) is equivalent to a Taylor

expansion of the original equation for the moments, equation (26). This can be checked
by explicit evaluation of the derivatives of the two expressions†.

5. Analysis of the RSA solution

Using equation (27), together with the SP equations (28), we obtain expansions ofiRSA1 at small

and largeα andβ0 (β0 =
√

2M̄β). We will make explicit calculations for the deterministic
and the HTT functions (the completely random case always givesi1 = α ln 2).

5.1. Smallα limit

Let us first investigate the deterministic case (β0 → ∞) in this regime. From equation (28),
we can see thats ≈ 2

π
α andx ≈ sτ (G2) ≈ 2τ(G2)

π
α. This gives the first two orders of the

expansion ofi1 in powers ofα:

iRSA1 ≈
α�1

α ln 2− α2 τ(G2)

π2
(35)

where we see that, as expected, the second order is negative. The next order inT0 gives, after
solving the SP equations up to orderT0,

iRSA1 ≈
α�1,T0�1

α ln 2− α2 τ(G2)

π2
+ α2 τ(G2)

3
T 2

0 . (36)

This is a positive contribution. However, this does not mean that the MI increases withT0; in
fact, the termi2 gives a larger contribution of orderαT0, as can be seen in equation (16). More
precisely,

iRSA = iRSA1 − i2 ≈ α ln 2− π
3/2

6
αT0 − α2 τ(G2)

π2
+
τ(G2)

3
α2T 2

0 . (37)

We now calculate the first-order correction inβ0 � 1 to iRSA1 . The leading order is the
fully stochastic case, andiRSA1 = i2 = α ln 2 (x = s = 0). Up to the next order,iRSA1 is:

iRSA1 ≈
α�1,T0�1

α ln 2− α2 τ(G2)

16
β4

0. (38)

From equations (17) and (38), we obtain:

iRSA ≈ 1

4
αβ2

0 −
τ(G2)

16
α2β4

0. (39)

† To compute the derivatives of equation (26) with respect toα one has first to make explicit its dependence on the

parameterN by expressingM in terms ofG (M = M̄
N
G). Then, after setting each derivative atα = 0, the resulting

integrals are easy to compute.
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5.2. Largeα limit

In this regime, and in the low-temperature limit, we obtain from equation (28) thatx ≈ s

ands ≈ A0α
√
x, whereA0 is the constant given in [1, 2]:A0 = 1√

π

∫∞
−∞ dz e−z

2
S
(

1+erf(z)
2

)
,

A0 ≈ 0.72. From here we obtains ≈ A2
0α

2, x ≈ A2
0α

2. Substituting these parameters in
equation (27) one obtains the known result [1,2]:

iRSA1 ≈
α�1

ln α + 1
2 + lnA0 + 1

2τ [ln G]. (40)

Adding weak output noise, and assumingα T0→ 0 we have:

iRSA1 ≈
α�1,T0�1

ln α +
1

2
+ lnA0 +

1

2
τ [ln G] +

π2A2
0

12
α2T 2

0 . (41)

From here and equation (16):

iRSA ≈ ln α + lnA0 +
1

2
+

1

2
τ [ln G] − π

3/2

6
αT0 +

π2A2
0

12
α2T 2

0 . (42)

In the opposite limit,β0 � 1 (large temperatures), and also assumingαβ2
0 small, it is

straightforward to see that:

iRSA1 ≈
α�1,T0�1

α ln 2− β
2
0

4
α +

1

2
τ

[
ln

(
IdN×N +

1

2
β2

0αG
)]

(43)

which together with equation (17) gives:

iRSA ≈ 1
2τ [ln (IdN×N + 1

2β
2
0αG)] (44)

which shows that the MI decays asβ2
0 whenβ0→ 0.

5.3. Numerical analysis

The plot of lniRSA (which is obtained combining equations (13) and (27)) versus lnα, using
the HTT for several values of the reduced noise parameterβ0 =

√
2M̄β, is shown in figure 1.

The correlation matrix was taken proportional to the identity:M = M̄
N
IdN×N . As expected,

for eachα, the MI decreases as the temperature increases. It is also interesting that an increase
in the temperature moves the saturation point (the change from the close-to-linear regime to
the asymptotic one, in which the MI increases slower withα) to greater values ofα.

6. Comparison between the exact and the RSA solutions

The analytical result presented in equation (34) seems rather astonishing as it provides a very
simple expression fori1, compared with the cumbersome formulae of the RSA solution. Then
the following two questions arise: first, whether the two solutions do or do not coincide at least
in the range of validity of the exact one. Secondly, whether the exact MI can be analytically
extended to greater values ofα. We will see that the answer to both questions is no, at least
for the deterministic transfer function.

With respect to the first question, an expansion in powers ofα can be easily evaluated for
the deterministic case. It turns out that the corresponding Taylor coefficients coincide up to
the second order, but the third is different. For instance, if the matrixM is proportional to the
identity we observe thatian − iRSA = i an1 − iRSA1 ≈ 4

π4α
3 at the lowest order inα. It should

be noted thatian is always greater thaniRSA (see figure 2). Both graphs are very close to an
undetermined value ofα nearα = 1 ( lnα ≈ 0 ), from which they split away quickly. Detailed
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Figure 1. ln iRSA versus lnα computed with the RSA for the deterministic transfer function and
the HTT function, for several values ofβ0. Full curve: β0 = ∞ (deterministic). Dotted curve:
β0 = 10 (near to deterministic). Light broken curve:β0 = 1. Broken curve:β0 = 0.1 (not far
from full stochasticity).

Figure 2. ln i versus lnα for the RSA solution (full curve) and for the analytical solution (broken
curve), for the deterministic transfer function.

numerical studies for smallα ( α ∈ [0.0001, 0.005] ) confirmed a cubic divergence between
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the two MI with coefficient≈ 4
π4 and a deviation from this value less than 0.25%.

As to the second question, the largeα expansion of the RSA solution is (equation (40)):

iRSA1 ≈
α�1

ln α + 1
2 + lnA0 + 1

2τ [ln G].

It is consistent with what is known about the continuous outputs, which should be reproduced
whenα goes to infinity. On the other hand, the analytical solution gives, in this limit:

ian1 ≈
α�1

α

(
ln 2− 1

π

)
+

1

2
ln α +

1

2
ln

2

π
+

1

2
τ [ln G] (45)

which is a qualitatively very different behaviour. Since the analytical solution is exact for small
α, with a convergence radius O(1), the previous expansion suggests that the channel exhibits
a phase transition.

7. Discussion of the phase transition

In this section we give a series of arguments to support the existence of a phase transition at
αc = O(1).

(1) The first argument is provided by the behaviour of the moments. The analytical
computation of the integer moments, equation (32), is exact in the thermodynamic limit.
Yet, those moments cannot be correct for every value ofα. This is because they diverge at
the valuesαnc = π/(2k2n). On the other hand, since℘ is a positive variable bounded by one
(and then its moments should be less than one) one can conclude that equation (26) presents
critical points before those values. A natural guess would be that these singularities appear
at values ofα that follow the same behaviour 1/(k2n)†.

(2) The critical point of� ℘ ln℘ � is related to the critical points of the moments (26). We
then expect that it has a phase transition at someαc ∼ 1/k2. As an example we consider
the completely random channel (k = 0), where according to the previous argument the
transition in pushed to infinity. In fact, the expansions ofi1 computed with the analytical
and the RSA solutions coincide in the largeT limit, in both regimes ofα (equations (38)
and (43)).

(3) One could infer the existence of the critical point, observing the behaviour of the
probability densityρ(Eh). If one considers this distribution for only one replica, a
dramatical change in the shape of the function takes place whenα goes from 1 to 2.
Considering its Fourier transform, equation (53), it can be seen thatρ̂(Eu) behaves at∞
like u−N (u denotes the modulus ofEu), while the volume element behaves asuP . This
means that this function is integrable (i.e.,ρ̂(Eu) is aL1 function‡) up toα = 1. It is also
a square integrable function (i.e., it belongs toL2) in this range. Fromα = 1 toα = 2 it
is no longer aL1 function, but it still belongs toL2; and beyondα = 2 it is no longer in
L2. What does this mean in terms ofρ(Eh)?
• Belowα = 1, ρ̂(Eu) ∈ L1. Consequently its Fourier transformρ(Eh) is bounded (that

is, belongs toL∞). Besides, sinceρ(Eh) is a probability density it is also inL1. The
same argument holds for its derivatives in the thermodynamic limit. This is because
derivation inEh-space is equivalent to multiplication by powers ofEu in Eu-space. Since

† Since the moments factorize as the product of contributions related to each eigenvalue ofM , we expect that there
is a critical value ofα for each of them. The functional behaviour at these transitions is the same, differing only in
the critical value ofα where they occur. This is not a serious complication, although one sould keep in mind that the
distribution of eigenvalues ofM is relevant.

‡ Lq = {f :
[∫ |f |q] 1

q < +∞}.
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the order of the derivatives is finite, the leading behaviour in the thermodynamic limit
is not changed.
It follows thatρ(Eh) and all its derivatives belong toL1 ∩ L∞. This means thatρ(Eh)
belongs to the Schwartz’s class (see, for instance, [21]). Then, it is a very regular,
fast decreasing function.

• Beyondα = 2, ρ̂ is no longer inL2, soρ cannot belong toL2 either (since the Fourier
transform is an isomorphism onL2). Thus,ρ cannot belong toL∞ (asρ belongs to
L1, then it would belong toL1 ∩ L∞ ⊂ L2, which is a contradiction). Then the
graph ofρ is broken by one or more divergences to∞.

• Betweenα = 1 andα = 2, the transition between the other two regimes has to occur.

For more than one replica, heuristic arguments permit us to say that the main contributions
to the characteristic function behaves likeu−N , independent of the number of replicas. The
volume element behaves likeuP(n+1). By the same arguments used in the case of a single
replica, nowρ({Eha}na=0) exhibits a transition which takes place betweenα = 1/(n + 1)
andα = 2/(n + 1). This is in agreement with the main conclusion obtained in the first
comment.
Thus, we have proved that the joint probability distribution of the replicated fields,
ρ({Eha}na=0), undergoes a phase transition at a some finiteα. Recalling that〈〈℘n+1〉〉 is
calculated averaging

∏n
a=0

∏P
i=1 f (h

a
i ) with this function, it is thus reasonable to think

that the integer moments of℘ and the MI could exhibit a phase transition caused by the
transition in the own distribution.

(4) Another argument in favour of the existence of a transition is given by the behaviour of the
information capacity. It has been proved [1] that this quantity has a third-order transition
for the deterministic channel. The high order of this transition makes the function rather
smooth and the critical point hard to detect. The information capacity is only an upper
bound of the MI, but it is plausible that the latter has a similar behaviour.

These comments lead us to conclude that the MI undergoes a phase transition. What is then
the meaning of the RSA solution? The expansion in powers ofα of the RSA solution differs
from that of the exact one at the third order, which is precisely the order of the transition for the
information capacity. Besides, a detailed study of the RSA solution shows that the dependence
of iRSA1 onα is infinitely smooth: this solution exhibitis no change in its behaviour.

The conclusion is that the completely symmetric ansatz does not provide a wide enough
family of solutions and the maximal MI is not attained by this ansatz. This explains why the
exact solution is always above the RSA one. So, RSAseems to bea smooth regularization of
the true MI. This would explain why it splits away from the true MI in a cubic way, supposing
that the latter possesses a third-order transition. On the other hand, the behaviour at largeα of
the RSA solution is consistent with that of the information capacity and of the MI in a network
with continuous output. Then, it is plausible that the RSA provides a smoothing for MI which
asymptotically has the correct behaviour, but which masks completely the critical point.

8. Further steps: beyond the RSA

We have explored the possibility of breaking the replica symmetry by modifying the ansatz for
Ũ andṼ (see appendix C). Our first attempt consisted in the usual RSB ansatz. After rather
lengthy calculations this led us to exactly the same solution given by the RSA.
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We also tried what can be called the segregated ansatz (SA), in which the first of the
replicas is split from the othern. Then we assume:

Ũ0
00 = U0

Ũ0
0b = Ũ0

b0 = U1 b = 1, . . . , n
Ũ0
aa = U2 a = 1, . . . , n

Ũ0
ab = U3 ∀a 6= b ∈ {1, . . . , n}

(46)

and analogously for̃V0†.
Under this ansatz the RS solution verifies again the SP equations. But in addition, an new

infinite set of functions ofα appears that also verify the SP equations. The MI is then given,
at eachα, by the function providing the maximal MI. We observe that at largeα this infinity
of solutions contributes below the RSA. However, for arbitrary values ofα the problem is too
complicated to deal with.

9. Conclusions

In this paper we investigated the information processing by a noisy perceptron channel. Our
network hasN real-valued input andP binary output neurons, which state is determined by
the joint probability distribution of the input and output statesP(Ev, Eξ). We performed the
calculation for a general continuous and bounded transfer function, depending on a noise
parameter. Our study generalizes previous results obtained for deterministic channels [1]
using the replica technique. We also give the explicit expressions for the mutual information
at different asymptotic regimes of the load parameterα = P/N and the noiseβ.

The mutual information per input unit can be decomposed in two pieces:i = i1− i2. The
second term, which extracts the wrong bits of information (the equivocation), can be calculated
exactly because of the factorization of the probability. The entropic parti1 is more difficult to
compute. Here we computed it by means of the replica technique and analytical methods.

Our main result is that for values ofα up to some value O(1) there exists an exact solution
for i, which we found explicitly (equation (34)). This solution isdifferent from the replica
symmetry ansatz solution (equations (27)–(31)). A numerical computation of both solutions
gives the remarkable result that they areextremely closeto each other up toα ∼ 1 (figure 2).
A smallα expansion shows that the two solutions are equal up to the second order. Although
the corresponding Taylor expansions differ above the third order, the numerical agreement up
to α ∼ 1 is excellent (a relative difference of less than 0.9% up toα = 0.1). This is due to
intriguing cancellations between higher orders.

Our conclusion is that there exists a critical valueαc of order one, above which a drastic
change of the mutual information occurs. This signals the appearance of a phase transition.
Aboveαc the analytical solution is not valid; one of the reasons is that it does not have the
correct largeα behaviour (it violates a bound given by the information capacity). On the
other hand, even if the replica symmetric solution is wrong at smallα, it does have the correct
asymptotic behaviour. Our interpretation of the RS solution is that it should be considered
as a smooth regularization of the true mutual information, which is given by the analytical
solution, equation (34), forα < αc. The precise value ofαc cannot be determined by our
techniques. There is numerical evidence [22] supporting the validity of the analytical solution
and the conjecture that the RSA solution is an excellent interpolation between the small and

† This ansatz is justified because it splits a typicaln × n box from the matrices, which are(n + 1) × (n + 1). This
splitting allows the segregated replica to behave independently from the others.
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largeα behaviours. The analysis of the origin of the discrepancies between the RSA and the
analytical approaches will be the subject of a future paper.

We have also explored some other schemes beyond the completely symmetric ansatz.
These are based on different types of RSB ansätze such as the usual breaking of the symmetry [3]
and the separation of the first replica from the others. In the first case it was shown that the
new solution coincides with the symmetric one. In the second, and because of the complexity
of the problem, we have not been able to give an explicit final result.

Note added in proof. Part of this work was presented at the ‘Interdisciplinary Workshop on Neural Networks’,
Würzburg, Germany, (October ’95) and at the ‘Fisica Estadistica’96’ meeting, Zaragoza, Spain (May 1996).
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Appendix A. Calculation of I2

To computeI2 in the general case, we use again the fact thatEξ and Eh are deterministically
related, which leads to

I2 =
P∑
i=1

∫
dJ ρ(J)

∫
dP Eh ρ(Eh|J)H(hi) (47)

or, in terms of the Fourier transforms of the field distributionρ(Eh|J) and ofH(hi) (ρ̂(Eu|J)
andH∧(ui), respectively)

I2 =
P∑
i=1

∫
dJ ρ(J)

∫
dP Eu ρ̂(Eu|J)H∧(ui). (48)

The Fourier transform of the field distribution is computed in appendix B. One has

ρ̂(Eu|J) = e−2π2Eu∆Eut (49)

where∆ = JCJ t ∈ MP×P (Re). After integrating over theJ in equation (48), we obtain:

I2 =
P∑
i=1

∫
dP Eu ρ̂(Eu)H∧(ui) (50)

whereρ̂(Eu) is the characteristic function ofρ(Eh). Although we cannot calculate the probability
density of Eh, we can have an explicit expression for its Fourier transform by comparing
equations (48) and (50). Replacing equation (49) in equation (48) we obtain

ρ̂(Eu) = 1√
det(IdNP×NP + 4π2U ⊗M)

. (51)

Here,

• IdNP×NP is the identity matrix in NP dimensions.
• ‘
⊗

’ stands for the tensor product betweenU andM .
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• M = ΓC is a constant,N -dimensional matrix. SinceEh is of order one, Tr(M) is also of
order one (Tr stands for the trace).
• U is aP -dimensional matrix defined as the projector onEu: (U)ii ′ = uiui ′ .

Sinceρ̂(Eu) is invariant under similarity transformations ofM , it can be expressed as

ρ̂(Eu) = 1∏N
j=1

√
det(IdP×P + 4π2mjU)

(52)

where{mj }, j = 1, . . . , N , is the set of eigenvalues ofM . The matrixU has only one
non-zero eigenvalue, which is|Eu|2 = Eu · Eu and thus:

ρ̂(Eu) = e−
1
2 ln

∏N
j=1(1+4π2mj |Eu|2). (53)

The computation ofI2 does not need the whole joint distributionρ(Eh) but only the
marginalsρ(hi); i = 1, . . . , P . By permutation symmetry, it is obvious that all of them
are given by the same function. Let us compute for exampleρ(h1). Its Fourier transform is

ρ̂(u1) = ρ̂(u1, 0, P−1′... , 0) = e−
1
2

∑N
j=1 ln (1+4π2mj (u1)

2) (54)

and since all the marginals are the same function, all the terms inI2 are the same. ThenI2
reads

I2 = P
∫ ∞
−∞

dh ρ(h)H(h). (55)

So far there is no hypothesis upon the matrixM . Particularly interesting is the case in
which all themj are of the same order, namely, of order 1/N (as we have already said, Tr(M)

is O(1)). In this particular case,

ρ̂(u) ≈
N�1

e−
1
2

∑N
j=1 4π2mju

2
+ O(e−N) = e−2π2M̄u2

+ O(e−N) (56)

whereM̄ = T r(M). In the thermodynamic limit the term O(e−N) becomes negligible and
ρ(h) is:

lim
N→∞

ρ(h) = e−h
2/(2M̄)

√
2πM̄

. (57)

(Note that this expression makes explicit the reason whyM̄ = O(1).) The conditional output
entropy now is:

I2 = P
∫ ∞
−∞

dz
e−z

2

√
π
H(
√

2M̄z). (58)

Appendix B. Computation of ρ̂(~u|J) for P > N

We define the Fourier transform of a functionF(Eh) as the functionF̂ (Eu) given by:

F̂ (Eu) =
∫

dP EhF(Eh)e−2π i Eh·Eu. (59)

The evaluation of̂ρ(Eu|J) in the caseP 6 N is simple. This is because for almost every
J the random vectorEh follows a Gaussian distribution with correlation matrix∆ = JCJ t
and det(∆) 6= 0. Then,

ρ̂(Eu|J) = e−2π2Eu∆Eut . (60)

We now prove that this equation is still true whenP > N . Let us first notice that in this
case det(∆) is necessarily null, and consequently the random vectorEh is not Gaussian.
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Let us compute℘(Ev|J) for the particular vectorEv = (1, 1, . . . ,1). Denoting this as℘
we have:

℘ =
∫

dN Eξ e−
1
2
Eξ(C)−1Eξ t

√
det(2πC)

P∏
i=1

f (hi) =
∫

dP Eu ρ̂(Eu|J)
P∏
i=1

f̂ (ui) (61)

with hi =
∑N

j=1 Jij ξj andui being its conjugate Fourier variable. ForP > N , the firstN

components ofEh are independent random variables and the otherP − N depend upon the
former (for almost everyJ).

We split the matrixJ into two matrices:K ∈ MN×N(Re), Kjj ′ = Jjj ′ ; andL ∈
MP−N×N(Re), Lkj = JN+k,j , k = 1, . . . , P −N; j = 1, . . . , N :

J =
(
K

L

)
and for almost everyJ , K is invertible. Then, we splitEh = (Eh0, Eh1), Eh0 ∈ ReN and
Eh1 ∈ ReP−N . Moreover,Eh0 is Gaussian-distributed with zero mean and covariance matrix
∆0 =KCK t , andEh1 = (LK−1)Eh0.

In this way, we obtain
∏P
i=1 f (hi) =

∏N
j=1 f (h

0
j )
∏P−N
k=1 f ([(LK−1)Eh0]k), and hence℘

can be written as:

℘ =
∫

dN Eh0 e−
1
2
Eh0(∆0)

−1Eh0t

√
det(2π∆0)

N∏
j=1

f (h0
j )

P−N∏
k=1

f ([(LK−1)Eh0]k). (62)

If g(Eh) is a function of vectorial argument, andf (x) has real argument, we have that:

(g(Eh)f (Ea · Eh))∧(Eu) =
∫ ∞
−∞

dc ĝ(Eu− c Ea)f̂ (c) (63)

where the hat symbol stands for the Fourier transform andEa is an arbitrary constant vector. It
should be noted that̂g is a multidimensional Fourier transform whilêf is the one-dimensional
Fourier transform.

Let us denote byEdk the (P − N) N -dimensional vectors defined by the rows ofLK−1.
Applying the previous formula to the expression for℘, and after using the Bessel–Plancherel
identity, we obtain:

℘ =
∫

dN Eu′ e−2π2Eu′∆0Eu′t
∫

dP−N Ec
N∏
j=1

f̂ (u′j −
P−N∑
k=1

ck( Edk)j )
P−N∏
k=1

f̂ (ck). (64)

Interchanging now the order of integrations and performing the change of variablesEu0,
related viaEu′ = Eu0 +

∑P−N
k=1 ck Edk, we obtain:

℘ =
∫

dP−N Ec
∫

dN Eu0
N∏
j=1

f̂ (u0
j )

P−N∏
k=1

f̂ (ck)

×e−2π2(Eu0∆0Eu0t+
∑P−N

k,k′=1 ckck′ Edk∆0 Edtk′+2
∑P−N

k=1 ck Eu0∆0 Edtk). (65)

It is convenient to combineEu0 and Ec in a singleP -dimensional vectorEu = (Eu0, Ec).
Expressing equation (65) in terms of this vector, we can use the vectorsEdk to simplify the
bilinear expression in the exponent as:

℘ =
∫

dP Eu e−2π2Eu∆Eut
P∏
i=1

f̂ (ui) ∆ = JCJ t (66)

that depends only on∆. From the right hand side of equation (61) we have

ρ̂(Eu|J) = e−2π2Eu∆Eut . (67)
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Appendix C. RSA derivation for I1

We now derive the SP equations. These are then simplified by using the RSA [3]. The first
order parameters are the overlap of two replicated Fourier transforms of the local field:

Ũab = 1

P
Eua · Eub a, b = 0, . . . , n. (68)

The pre-factor is taken in order to ensure that it is of order one. These are the elements of
a matrixŨ ∈ M(n+1)×(n+1)(Re). Then, the Fourier transform of the joint distribution of the
replicated local fields, equation (24), can be expressed in terms of this matrix as:

ρ̂({Eua}) =
∏
a6b

∫ ∞
−∞

dUab δ

(
Uab − 1

P
Eua Eub

)
e−

1
2

∑N
j=1 ln det [Id(n+1)×(n+1)+4π2Pmj Ũ ] . (69)

Now we introduce an order parameterṼ , conjugated toŨ . To linearize the quadratic form in
the Eua we useP new variablesEwi , which are(n + 1)-dimensional vectors.

After substituting equation (69) in equation (26), we can perform the integrals over theEuα.
Since these integrals are the anti-Fourier transforms of thef̂ (uai ), the〈〈℘n+1〉〉 can be expressed
in terms of the product of the transfer functions simply:

〈〈℘n+1〉〉 =
∫ ∏

a6b
(−iP dṼ ab dŨab)e

2πP
∑

a6b ŨabṼ
ab− 1

2

∑N
j=1 ln det [Id(n+1)×(n+1)+4π2mj Ũ ]

×
P∏
l=1

∫
dn+1 Ewl e−

1
2 Ewl(Ṽ )−1 Ewtl√

det(2π Ṽ )

n∏
a=0

f (
wal√
π
) (i ≡ √−1). (70)

This can be written as:

〈〈℘n+1〉〉 =
∫ ∏

a6b
(−iP dṼ ab dŨab)

×e2πP
∑

a6b ŨabṼ
ab− 1

2

∑N
j=1 ln det [Id(n+1)×(n+1)+4π2Pmj Ũ ]+P lnZ(Ṽ ) (71)

where

Z(Ṽ ) =
∫

dn+1 Ew e−
1
2 Ew(Ṽ )−1 Ewt√

det(2π Ṽ )

n∏
a=0

f

(
wa√
π

)
. (72)

In the largeN limit (α = P
N

fixed), the integrals over̃U andṼ in equation (71) can be solved
by the SP method. This gives:

〈〈℘n+1〉〉 ≈ eG(Ũ0,Ṽ0) (73)

whereŨ0 andṼ0 are the SP values and

G = 2πP
∑
a6b

ŨabṼ
ab − 1

2

N∑
j=1

ln det [Id(n+1)×(n+1) + 4π2Pmj Ũ ] + P lnZ(Ṽ ). (74)

The RSA is: {
Ũ0
aa = U0 ∀a

Ũ0
ab = U1 ∀a 6= b and

{
Ṽ 0
aa = V0 ∀a
Ṽ 0
ab = V1 ∀a 6= b. (75)

The starting point is equation (73), where the functionG is evaluated with the RSA given
in equation (75). Defining the matrix 11∈ M(n+1)×(n+1)(Re) as(11)ab = 1∀a, b, Ṽ can be
expressed as:

Ṽ = (v0 − 1
2v1)Id(n+1)×(n+1) + 1

2v111 (76)
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and its inverse is:

(Ṽ )−1 = x0Id(n+1)×(n+1) + x111 (77)

wherex0 = 1
v0− 1

2v1
andx1 = −

1
2v1

(v0− 1
2v1)(v0+ n

2 v1)
. This form of(Ṽ )−1 allows us to expressZ(Ṽ )

(equation (72)) in a more convenient way:

Z(Ṽ ) = (2π)− n+1
2 x

n
2
0

√
x0 + (n + 1)x1

∫
dn+1 Ew e−

1
2x0

∑n
a=0w

2
a− 1

2x1(
∑n

a=0wa)
2
n∏
a=0

f (wai /
√
π).

(78)

Notice thatZ(Ṽ )→ 1
2 asn→ 0. We now expandZ(Ṽ )up to ordern,Z ≈ 1

2+nh(x0, x1),
h = ∂Z/∂n|n=0. Up to this order we obtain:

G ≈ 2πP (n + 1)v0u0 + πPnu1v1− 1

2

N∑
j=1

(1 + 4π2Pmju0)− n
2

N∑
j=1

4π2Pmju1

1 + 4π2Pmju0

−n
2

∑
j=1

N ln (1 + 4π2Pmj(u0 − u1))− P ln 2 + 2Pnh(x0, x1). (79)

The SP equations extremizeG with respect to its variables. From the SP equation
∂G/∂v0 = 0 one obtains thatu0 is linear in n: u0 = nũ. Replacing equation (79) in
equation (73), and this in equation (22) we have:

IRSA1 = −2πPv0ũ + πPv1u + 2π2PM̄ũ− 2π2PM̄u + 1
2

N∑
j=1

ln (1 + 4π2Pmju)

−2Ph(x0, x1) (80)

whereu = −u1. The SP equations are:

v0 = πM̄

v1 = 2πM̄ − 2π
N∑
j=1

mj

1 + 4π2Pmju

ũ = − 1

π
∂h/∂v0

u = 2

π
∂h/∂v1.

(81)

ũ is a Lagrange multiplier, that can be easily removed by substituting the value ofv0 in IRSA1 .
The evaluation ofh(x0, x1) requires some care. We expressZ as:

Z(Ṽ ) = (2π)− n+1
2 x

n
2
0

√
x0 + (n + 1)x1

∫ ∞
−∞

dx
e−

1
2x

2

√
2π

[L(x)]n+1 (82)

where

L(x) =
∫ ∞
−∞

dw e−
1
2x0w

2+i
√
x1xwf (x/

√
π). (83)

Computing the term of ordern of Z we obtain:

h(x0, x1) = −1

2
ln 2− 1

2

√
x0 + x1

2πx0
M̃(x0, x1) (84)

with

M̃(x0, x1) =
∫ ∞
−∞

dz e−
x0+x1

2x0
z2

F̃ (g̃(z)) (85)
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where the functionF̃ (y) is defined by:

F̃ (y) = 1

2
ln

1− y
1 +y

− 1

2
ln (1− y2) (86)

and its argument is:

g̃(z) =
√

2x0

π
e

1
2
x1
x0
z2
∫ ∞
−∞

dw e−
1
2x0w

2
sinh(

√−x1zw)f (w/
√
π). (87)

Substitutingh(x0, x1) given above in equation (80), we obtain:

IRSA1 = P ln 2 +P

√
x0 + x1

2πx0
M̃(x0, x1) +

1

2

N∑
j=1

ln (1 + 4π2Pmju)

−1

2

N∑
j=1

4π2Pmju

1 + 4π2Pmju
(88)

and the SP equations become:

x0 = 1/

(
π

N∑
j=1

mj

1 + 4π2Pmju

)
x1 = 1

πM̄
− x0

u = − x2
0

(2π)3/2

(
∂

∂x0
− ∂

∂x1

)[√
x0 + x1

x0
M̃(x0, x1)

]
.

(89)

We can substitute inIRSA1 one of the parameters, for examplex0. Definingx = −πM̄x1,
s = 4π2M̄αu and rearranging conveniently equations (88) and (89), we finally obtain
equations (27) and (28).

Appendix D. Analytical derivation of I1

This exact calculation starts from equation (26). We assume that all the eigenvalues
{mj }j=1,...,N of the matrixM are at most of order1

N
. We define nowŨ in a slightly different

way from equation (68):

Ũab = Eua · Eub. (90)

These elements are of orderP and hencemj Ũ is of orderα. ρ̂({Eua}) is computed as in
section 4.1. Then, the logarithm in the exponent of equation (69) can be expanded around the
identity matrix (which can be done ifα is less than 1

4π2M̄
times a geometrical factor of order

one, that depends onG)

ρ̂({Eua}) =
∞∏
m=1

e
1
2 (−1)m (4π2)m

m
Tr(Mm)Tr(Ũm). (91)

Let us remark thatthis is not an approximation. It is an exact derivation valid in a
(undetermined) range of valuesα of order one. We can alternatively write this in the following
form:

ρ̂({Eua}) = e−2π2M̄
∑n

a=0 |Eua |2
∞∏
m=2

e
1

2m (−4π2M̄)mN Tr(Gm)Tr((Ũ/N)m). (92)

The second factor can now be expanded, leading to polynomials in traces of powers ofŨ/N .
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Given a functionF({Eua}), we now define its average with the transfer function (or shortly,
its transfer-average) as:

≺≺ F ��=
∫ n∏

a=0

dP Eua e−2π2M̄|Eua |2F({Eua})
n∏
a=0

P∏
i=1

f̂ (uai ). (93)

Notice that

≺≺ 1��= 2−P(n+1). (94)

This property comes from the fact thatf (x)+f (−x) = 1, and sof (x) = 1
2 +a(x), wherea(x)

is an odd function bounded by− 1
2 and 1

2. Notice that, although this will not be required here,
in the physically reasonable casesa(x) is an increasing and almost everywhere continuous
function, 06 a(x) 6 1

2, x > 0 such thata(x)→ 1
2 whenx →∞.

In terms of these transfer-averages, the moments read:

〈〈℘n+1〉〉 = 2−P(n+1) +
∞∑
σ=2

∑
26s1<···<sλ
s1t1+···+sλtλ=σ

Ct1,...,tλs1,...,sλ
3t1,...,tλ
s1,...,sλ

(95)

where

Ct1,...,tλs1,...,sλ
= (−4π2)σ

t1! . . . tλ!

(
NM̄

2

)t1+···+tλ
(Tr[(G)s1])t1

s
t1
1

. . .
(Tr[(G)sλ ])tλ

s
tλ
λ

(96)

and

3t1,...,tλ
s1,...,sλ

=≺≺ (Tr[(Ũ/N)s1])t1 . . . (Tr[(Ũ/N)sλ ])tλ �� . (97)

These transfer-averages have a very simple expression in the thermodynamic limit, what allows
us to rearrange the whole expression in a convenient way. First, we must notice that:∫ ∞

−∞
du e−2π2M̄u2

u2r f̂ (u) = 1
2δ0r (98)

becausef (x) = 1
2 + a(x) and a(x) is odd. We now prove a factorization property,

equation (103), of the transfer-averages of traces ofŨ that will be useful to compute〈〈℘n+1〉〉.
The trace of therth power ofŨ can be written as:

Tr(Ũ r ) =
n∑

a1,...,ar=0

P∑
i1,...,ir=1

u
a1
i1
u
a1
i2
u
a2
i2
u
a2
i3
u
a3
i3
u
a3
i4
. . . u

ar−1
ir−1
u
ar−1
ir
u
ar
ir
u
ar
i1
. (99)

After taking the transfer-average on this expression, one should notice that the contribution of
each term does not depend on the particular indecesi andα present in that term. It only depends
on the number of different variables in the term and the power of each variable. This is due to
the independency and permutation symmetry of theu. It is possible to rearrange equation (99),
expressing it as the sum of each different contribution times a combinatorial factor. This factor
is the number of terms giving that particular contribution. Since the contributions themselves
are of order one, the thermodynamical limit is determined by the combinatorial factors. In this
limit, P →∞ (r kept finite) and the combinatorial factors scale asP raised to the number of
non-repeated indecesi. Then, no more than twou can be equal. Defining

λ(M̄) =
∫ ∞
−∞

du e−2π2M̄u2
uf̂ (u) (100)

and considering equation (98) forr = 0 andr = 1, the transfer-average of equation (99) can
be expressed in terms ofλ:

≺≺ Tr[(Ũ/N)r ] �� =
N→∞

2−P(n+1)χr (101)



1894 A Turiel et al

where

χr = (nr + (−1)rn)(2λ)2rαr . (102)

By similar arguments, one can prove a useful factorization property. For the product of
two traces we have:

≺≺ Tr[(Ũ/N)r ] Tr[(Ũ/N)s ] ��= 2−P(n+1)χrχs (103)

and a similar factorization holds for the product of an arbitrary number of traces. Recalling
equation (95), this property allows us to write:

〈〈℘n+1〉〉 = 2−P(n+1) exp

[
N

∞∑
m=1

1

2m
(−4π2M̄)m Tr[(G)m]χm

]
. (104)

Substituting the explicit values of theχ , equation (102), and preforming the sum, we have:

〈〈℘n+1〉〉 = 2−P(n+1)e−
1
2 Tr[ln (IdN×N+16π2λ2nPM)]e−

n
2 Tr[ln (IdN×N−16π2λ2PM)] . (105)

These moments can be expressed in a more useful way. Definingk by:

k =
∫ ∞
−∞

dy ye−
y2

2 f (
√
M̄y) (106)

we haveλ2 = − k2

8π3M̄
. Using this relation in equation (105), we finally obtain equation (34).
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