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Abstract. We calculate the mutual information (MI) of a two-layered neural network with
noiseless, continuous inputs and binary, stochastic outputs under several assumptions on the
synaptic efficiencies. The interesting regime corresponds to the limit where the number of both
input and output units is large but their ratio is kept fixed at a valud/e first present a solution

for the Ml using the replica technique with a replica symmetric (RS) ansatz. Then we find an exact
solution for this quantity valid in a neighbourhoodwot= 0. An analysis of this solution shows that

the system must have a phase transition at some finite vadu€ldfis transition shows a singularity

in the third derivative of the MI. As the RS solution turns out to be infinitely differentiable, it could

be regarded as a smooth approximation to the MI. This is checked numerically in the validity
domain of the exact solution.

1. Introduction

The aim of this work is to study the properties of a binary communication channel processing
data from a Gaussian source, when the output state is stochastic. The architecture is a two-
layered feedforward neural network witt analogue input units an#l binary output units.
The mutual information (M) is evaluated in the largelimit with o = % fixed. Research
in this direction was previously done in [1], where the case of a noiseless binary channel was
studied, and in [2] which dealt with the case of a Gaussian source corrupted with input noise.
The main motivation of this work is a technical one. In [1] and [2] the MI of binary
channels was obtained by means of the replica technique and the replica symmetry ansatz
(RSA) [3]. However, there have not been attempts to show the validity of this solution. In this
paper we give an analytical solution of the Ml of the channel without making use of the replica
technique. In order to compare both methods, the RSA solution of a general stochastic binary
channel is also evaluated. While the RSA yields an expression of the Ml for all values of
the exact analytical solution turns out to be valid only up to same O(1). However, our
conclusion is that the correct solution is the analytical one and that there is a (possibly large
order) phase transition located at the value wfhere the analytical solution ceases to be valid.
The RSA solution has to be regarded just as a smooth approximation to the Ml, interpolating
between the correct small and largeegimes.
There are several other motivations for doing this investigation. Once the Ml of the channel
is known, the problem of extracting as much information as possible from the inputs can be
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addressed. This optimization problem leads to interesting data analysis. Optimizing the Ml, a
criterion known as the ‘infomax’ principle [4], is a way of unsupervised learning (see, e.g., [5]).
The parameters of the model (that is, of the channel) adapt according to this principle and in this
way they learn the statistics of the environment (that is, of the source). One can also optimize
the MI by adapting the transfer function itself [6, 7]. Another form of this type of unsupervised
learning is the minimum redundancy criterion [8]. Both have been used to predict the receptive
fields of the early visual system [9-12]. The relation between them has been discussed in [7].
Another motivation is that learning how to solve this particular nonlinear channel could provide
the techniques to deal with other type of nonlinearities. Little is known on the properties
of systems other than linear, except for threshold-linear networks [13—-15] (treated with the
replica technique), approximations for weak nonlinear terms in the processing [16], some
general properties of the low and large noise limits [7,17] and an analytical treatment of binary
communication channels, either noiseless [1] or with an input noise [2].

This paper is organized in the following way. The model is explained in section 2, where
the notation and the relevant quantities are also given. In section 3, the exact calculation of one
of the contributions to the MI (the ‘equivocation’ term, see [18]) is presented. In section 4 the
evaluation of the other contribution to Ml (the entropy term) is discussed. In section 4.1, thisis
done by the usual replica technique. The exact solution is obtained in section 4.2. In section 5
the RS expression of the Ml is analysed in several asymptotic regimes; a numerical analysis
of the RSA solution is also presented at the end of this section. The comparison between
the exact and the RSA solutions is made in section 6. A discussion about the existence of
a phase transition is given in section 7. Section 8 is devoted to the analysis of the replica
symmetry breaking (RSB) solutions. The conclusions are contained in section 9. Finally,
several technical questions are presented in the appendices.

2. The model

We consider a two-layered neural network WNhinputs§ € Re" and P binary outputs
v € (Z2)F. The input vectok is distributed as a Gaussian with zero mean and covariance
matrixC € My y(Re):

- e 3O
= —— 1
p&) det 2O 1)
The feedforward connections are denoted by the matrix Mp, y (Re) and its matrix
elements by{J;;}(i = 1,...,P;j = 1...,N). Instead of considering a fixed matrix we

prefer to compute the average MI over an ensemble of stochastic binary channeld;;The
have also a Gaussian distribution, with zero mean value and two-point correlBtions

(Jijdirj ) =8 Tjp 2

where the double angular brackets indicate the average over the channel ensenible and
My y(Re) . Notice that those connections converging to different outputs are independently
distributed. The coupling matriX can be also regarded &srandom/ -dimensional vectors

J;(i =1,..., P)given by the rows off. From equation (2), we have that each of these rows
is distributed independently as:

L e i@
J)= ————.
L) J/det(2nT)

Let us now define the local field afs = J.f:-‘. The output state is computed by
means of the probability distributiop (v |#) that the output vector i8 for a given local

®3)
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field 7. Most interesting problems have a factorized output distribution; we will then
assume thap (v|h) = ]’[lep(vimi). We will also require the reasonable condition that
@ (vilhi) = fg(hiv;) (B denotes an output noise parameter), whégex) is an arbitrary
function satisfying 0< fz(x) < 1 andfs(x) + fg(—x) = 1.

Both the replica and the exact calculations will be done for any of tifgsg. However,
we will study with some detail the case (to be referred to as the hyperbolic tangent transfer
(HTT) function):

efx 1
fx) = Frreh = E(l +tanh(fx)). 4)

The deterministic channel [1] is obtained either whg) is chosen as the Heaviside
functioné or in the larges limit of the HTT function.

Let us now define the mutual informatidiiw, £|.J) [18—20] between the input and output
vectors, given the channel parametérs

0 (0, E1J)

7). 5
o @) ©)

1(3,£17) =) p(.£|J)log
¥

wheregp (v]J) is the output vector distribution giveh. The joint probabilityg (v, §|J) can
be written as

0@, &) = pE)p (BIE, J) (6)

wheregp (6|§, J) denotes the conditional distribution of the output veatgiven the inpu€
and the channel. Since the relation between the input and the local fieilsl deterministic,
it can be substituted by (3]7).

First we need to define the output entropy for fixed couplifigs

H@L) ==Y 9 @|J)logp (B]7) 7

and the entropy of the output conditioned by the inéulagain for fixed couplings (the
equivocation term):

HGIE, ) = —fd”é'p(é’)Zso(m%, Dloge GIE. J). ®)

Then the MI can be expressed as
[(3,E1J) = H@IJ) — HGIE, J). ©)

We are interested in the mutual informatién= (<I(ﬁ,§|J))) averaged over the channel
ensemble. Then, calling = (H ®|J)) andl, = {(H (v|€, J))), we havel = I; — I, or in
terms of Ml per input unitj = iy — i, wherei; = £ andi, = 2.
Each term will be studied separately. In the next section we compute the equivocation
term I,. This can be obtained exactly by means of simple arguments. The output entropy
term requires more care. It will be evaluated in section 4.1 using the replica technique and in

section 4.2 using exact analytical methods.

T In equation (5) and hereafter, log = 'ﬂ%’ In the derivations, however, we make use dfvinbecause of the
Taylor expansions.
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3. The equivocation termI,

Sincep (V|€, J) factorizes, it is convenient to define the single output entragy, ), which
is afunctionof 4;:

Hh) =~ Y o wilhi) In g (vilh) (10)
vi==%1

where one should keep in mind that Jg. Then:

P
HE@E J) =) / d"E p(E)H(h:) (11)
i=1
and
L - -
L= [arpw) [ ¢Ep@rmmn. (12)
i=1

I, can be easily evaluated in several simple examples. In the deterministic case it is zero.
In the large noise limitg — 0) it reaches its upper bourigd = P In 2. For the HTT function,
equation (4), we havi (h) = In (e?" + e #") — gh tanhBh, and this single output entropy can
be substituted in equation (12) to obtdn In appendix A the details of such calculation are
presented; here we recall the final formula equation (58), valid for a madric T'C having
all its eigenvalues of the same order and any functigh). The equivocation terrper input
unit is then:

Q:afjﬁzigﬂwﬁMm (13)
with M = Tr(M) (the trace ofM). For the sigmoidal HTT function, we obtain:
ir=a i(—l)’”*lAm (14)
m=1
where
Am:%%+<%-em%)a—emmm»&% (15)

and By, = v2M B, which we shall call theeduced noise parametelternatively, we will
also use theeduced temperatur = S, 1. The symbol erfx) stands for the error function.
One can easily obtain several limits. For sniatl

3/2
io & G%To (16)

where one observes thiatgrows linearly withTy. For smallgo,
i»~aln2— %,35. 17)

In this case, departs fromw In 2 quadratically withgo.

For other transfer functions one obtains the same qualitative result, although with different
coefficients. This is simply because these coefficients depend on the derivatives of the transfer
function in the neighbourhood @ = 0 andg = oo, respectively.
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4. Calculation of I

We now compute the output entropy term defined in equation (7). First we notice that the
(discrete) probability density of the outputss given by:

o5 = pG1T) = /ngp(g)@(Ulg, J). (18)

Sinceg; is a probability density} - o3 = 1 and so
Ylertty —1

n—0 n
((pg'*l)) can be written in terms of replicated variab[ég}, a=20,1,...,ninthe following
way:
n R P
(o™ = / dJ p(J) f I [d'\g”pg ENTT f(wh?)] (20)
a=0 i=1
Here the local fields are:
N
e =" gl (21)
j=1

We will only compute the integer order momentsggf. The continuous order moments
will be obtained by naive extrapolation of them. Actually they can be obtained in a completely
rigorous way (although in a rather complicated fashion) because the integer moments contain
enough information to reconstruct the probability distribution of the varigble

It is obvious from the distribution of that each element; is independent of the others
with different output index. Using this and the fact that eadh has an even distribution
(Gaussian) we have thg?*1) is independent of. Thus we can write:

2P n+ly 1
p=_2te"h =1 (22)
n

wheregp stands for the conditional distributigs; with a specific choice of , e.g.v; = +1,i =
1,...,P.

In equation (20) we can apply, for almost evelythe Bessel-Plancherel identity in each
of the integrals over thg“:

1Zar —1%a

g 35O P S
—_ h) = | dPut e @A uf). 23
& e L1/ [ [TFw. @
The functionf is the Fourier transform of and must be understood in the distributional sense,
andA = JCJ'. This expression holds for any value BfandN (see appendix B for details).

>

.....

Ao _ 1y 2,
p({ua}a” a) —e 2 Zj=1|ndet(1dpxp+4f[ m;U) (24)

where the matriUU is the sum of all the projectors associated to each replica vector,

U,'," = ’Zlu?ld;l/ (25)
a=0

From equations (20) and (23) we obtain the following result:

n n P
(") = / [Td"apctah [T . (26)
a=0

a=0i=1
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This formula is exact for the moments of integer ordegofThis will be the starting point
of section 4.2, where we will calculate the momentgafxactly. Before that we present the
RSA solution.

4.1. The RSA approach

After a rather lengthy algebra we obtain the entropy téymSome details of the calculation
are described in appendix C; here we only give the final regulis a function of two order
parameters, here calladands. Its value per input unit is given by:

if54 = aR(x) + %T[m (Idnxn +5G)] — =7)

2x+1)
whereg is the normalized matrixg = % We have made use of the symholfor a

normalized trace operatar(-) = % Tr(-). The order parameters satisfy the self-consistent SP
equations:

(iarevia) (v v0)
x=st|\——— |/t | —
Idyyy +5G Idyxy +5G (28)
s = —2a(x + 1)2d—R.
dx

The functionR (x) is the average entropy of an effective transfer functipdefined as:

M

1 & 2
- —(wty)
e == [ awemy (20 (29)
More precisely,
1 o 2
R(x) = ﬁ/ dy e S(g:(v/xy)) (30)

whereS(z) is the entropy of a binary probability, i.e.,
S =—-zInz—(1L-2)In(1—2). (31)

It is worth noting that for the deterministic cage(y) = %(1 + erf(y)), and for the fully
random casg,(y) = % In the deterministic case, there is a simple relation between our
parameters and those &ndg) used in [1]:g = s andg = 33-. We prefer to use instead of

g because it usually yields simpler expressions.

4.2. The exact solution

In this section we present an exact evaluatioofalid for « < «., whereq, is of order one.

It is necessary to assume that all the eigenvaluedfot= T'C are of the same order. The
details of the calculation are presented in appendix D; we only give here the final result for the
moments:

(o™t = 2~ P(1+1) =3 Trln (id ey — 2K2na )] o= 5 Trlin (1d y v+ 2K2aG)] (32)
wherek is defined as:

k= f dyye > £V My). (33)
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Let us now extrapolate equation (32) to non-integerhis gives our analytical estimate igf

1 . 27P(n+1) n+ly 1
o=~ Lim ")
N n—0 n

k? 1 2k2
=aln2— —a+=1 [In (IdeN+—ag)] . (34)
b4 2 b4

The numerical constartt is real-valued, and it is expected to be of order one. In fact, the
maximum ofk is reached in the deterministic case(x) = 6(x) ). This givesk = 1,
independent of\f. Notice that the minimum ok is reached byf(x) = 6(—x), giving
k = —1. The minimum of? is realized byf (x) = % which givesk = 0.

The computation performed in this section (equation (32)) is equivalent to a Taylor
expansion of the original equation for the moments, equation (26). This can be checked
by explicit evaluation of the derivatives of the two expressionst.

5. Analysis of the RSA solution

Using equation (27), together with the SP equations (28), we obtain expansi¢#é af small

and largex and gy (Bo = v2M B). We will make explicit calculations for the deterministic
and the HTT functions (the completely random case always gjvesx In 2).

5.1. Smalkr limit

Let us first investigate the deterministic cagg - oo) in this regime. From equation (28),
we can see that ~ %a andx ~ st(G?) ~ 2’(792)01. This gives the first two orders of the
expansion of; in powers ofx:

zf(gz)

if54 ~ @In2 -« >
b4

akl
where we see that, as expected, the second order is negative. The next Gydgivas, after
solving the SP equations up to ordey

(39)

2 2
RSA Ino— 271G | 1@ )T2.
1 01<<1,T0<<1a : « 2 * 3 0 (36)

This is a positive contribution. However, this does not mean that the Ml increasegyith
fact, the term, gives a larger contribution of ordefTy, as can be seen in equation (16). More
precisely,
3/2 2 2
PRSA — ifSA —ir~aln2— %aTo - aZTSTgZ) + T(g )
We now calculate the first-order correctionfip < 1 toif4. The leading order is the
fully stochastic case, angt** = i, = «In2 (x = s = 0). Up to the next ordei;** is:

a?T§. (37)

CRSA _ ,T(G? ,

i a<<17}0>>1a N2 -« 16 Bo- (38)
From equations (17) and (38), we obtain:

. 1 7(G%)

ifA ~ Zaﬁg ~ 16 a?pg. (39)

t To compute the derivatives of equation (26) with respeat tme has first to make explicit its dependence on the

parameteV by expressingV in terms ofG (M = %g). Then, after setting each derivativeoat= 0, the resulting
integrals are easy to compute.
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5.2. Largex limit

In this regime, and in the low-temperature limit, we obtain from equation (28)xthat s
ands &~ Aga+/x, WhereAy is the constant given in [1, 2J4¢ = Ji; [ dze s (“eTrf@>

Ao ~ 0.72. From here we obtain ~ AZe?, x ~ A3x?. Substituting these parameters in
equation (27) one obtains the known result [1, 2]:

ifsA illna+%+lnAo+%r[ln Gl. (40)

o>

Adding weak output noise, and assumin@, — 0 we have:

1 1 w2A2
RSA ~  Ina+Z+InAg+=t[Ing]+ 9?12 41
st O 2 o+ tlingl+ =5 ey (“41)
From here and equation (16):
, 1 1 732 m2A2
iRSA ~Ina+1InAp + >+ Er[ln Gl - —oTo+ 120a2T02. (42)

In the opposite limit,8y < 1 (large temperatures), and also assumipg small, it is
straightforward to see that:
Bs

1 1
RSA _ - 152
i a>>l’3"0>>la In2 2 + 21: |:|n (IdeN + zﬁoag)} (43)

which together with equation (17) gives:
i34 x~ 1eIn (Idyxy + 3B5aG)] (44)
which shows that the MI decays 8% when g, — O.

5.3. Numerical analysis

The plot of Ini®54 (which is obtained combining equations (13) and (27)) versus Ursing

the HTT for several values of the reduced noise paranfigter «/mﬂ, is shown in figure 1.

The correlation matrix was taken proportional to the identity: = %IdeN . As expected,

for eachu, the Ml decreases as the temperature increases. Itis also interesting that an increase
in the temperature moves the saturation point (the change from the close-to-linear regime to
the asymptotic one, in which the Ml increases slower wiflio greater values af.

6. Comparison between the exact and the RSA solutions

The analytical result presented in equation (34) seems rather astonishing as it provides a very
simple expression fak, compared with the cumbersome formulae of the RSA solution. Then
the following two questions arise: first, whether the two solutions do or do not coincide at least
in the range of validity of the exact one. Secondly, whether the exact MI can be analytically
extended to greater values @f We will see that the answer to both questions is no, at least
for the deterministic transfer function.

With respect to the first question, an expansion in powessa#n be easily evaluated for
the deterministic case. It turns out that the corresponding Taylor coefficients coincide up to
the second order, but the third is different. For instance, if the maifiis proportional to the
identity we observe that” — i®$4 = jom — 54 ~ %43 at the lowest order iw. It should
be noted that®" is always greater thaifS4 (see figure 2). Both graphs are very close to an
undetermined value ef neare = 1 (Ina =~ 0), from which they split away quickly. Detailed
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ln ZRSA T T T T T T T T

Ina

Figure 1. Ini®34 versus Inx computed with the RSA for the deterministic transfer function and
the HTT function, for several values @f. Full curve: By = oo (deterministic). Dotted curve:
Bo = 10 (near to deterministic). Light broken curvgy = 1. Broken curve:gp = 0.1 (not far
from full stochasticity).

Int
10 F i

2 -

4k -

6 -4 -2 0 2 4 6 8 10 12
Ina

Figure 2. Ini versus Inx for the RSA solution (full curve) and for the analytical solution (broken
curve), for the deterministic transfer function.

numerical studies for small (« € [0.0001, 0.005] ) confirmed a cubic divergence between
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the two MI with coefficient % and a deviation from this value less tha@%%.
As to the second question, the lakgexpansion of the RSA solution is (equation (40)):
-RSA o 1 1
iy a;ﬂlna +35+InAg+57[Ing].
It is consistent with what is known about the continuous outputs, which should be reproduced
whena goes to infinity. On the other hand, the analytical solution gives, in this limit:

1 1 1 2 1
S —— )+ = +—-In—+ = 4
Iy a»la (In 2 ) > Ino > In 2r[ln Gl (45)

which is a qualitatively very different behaviour. Since the analytical solution is exact for small
a, with a convergence radius(D, the previous expansion suggests that the channel exhibits
a phase transition.

7. Discussion of the phase transition

In this section we give a series of arguments to support the existence of a phase transition at
o, = 0(1).

(1) The first argument is provided by the behaviour of the moments. The analytical
computation of the integer moments, equation (32), is exact in the thermodynamic limit.
Yet, those moments cannot be correct for every value dthis is because they diverge at
the values” = 7/(2k?n). Onthe other hand, singeis a positive variable bounded by one
(and then its moments should be less than one) one can conclude that equation (26) presents
critical points before those values. A natural guess would be that these singularities appear
at values ofr that follow the same behaviouy &?n) 7.

(2) The critical point ok« g In e > is related to the critical points of the moments (26). We
then expect that it has a phase transition at seme 1/k°. As an example we consider
the completely random channél & 0), where according to the previous argument the
transition in pushed to infinity. In fact, the expansiong,;afomputed with the analytical
and the RSA solutions coincide in the larfidimit, in both regimes ofx (equations (38)
and (43)).

(3) One could infer the existence of the critical point, observing the behaviour of the
probability densityp(ﬁ). If one considers this distribution for only one replica, a
dramatical change in the shape of the function takes place whgoes from 1 to 2.
Considering its Fourier transform, equation (53), it can be seerptiatbehaves ato
like u=V (u denotes the modulus a@f), while the volume element behaves:ds This
means that this function is integrable (i.2(;) is a L' functiont) up tox = 1. Itis also
a square integrable function (i.e., it belongdf) in this range. Fronx = 1toa = 2 it
is no longer aL* function, but it still belongs td.2; and beyondr = 2 it is no longer in
L?. What does this mean in terms pfh)?

e Belowa = 1,5(u) € L. Consequently its Fourier transfor/mﬁ) is bounded (that
is, belongs ta.*°). Besides, sincg (h) is a probability density it is also in!. The
same argument holds for its derivatives in the thermodynamic limit. This is because
derivation ink-space is equivalent to multiplication by powersidh i-space. Since

T Since the moments factorize as the product of contributions related to each eigenvelyevefexpect that there

is a critical value ofx for each of them. The functional behaviour at these transitions is the same, differing only in
the critical value ofx where they occur. This is not a serious complication, although one sould keep in mind that the
distribution of eigenvalues a1 is relevant.

£ L= (f:[[1£19]7 < +oo).
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the order of the derivatives is finite, the leading behaviour in the thermodynamic limit
is not changed.
It follows thatp(fz) and all its derivatives belong tb' N L>. This means thayb(ii)
belongs to the Schwartz’s class (see, for instance, [21]). Then, it is a very regular,
fast decreasing function.

e Beyondx = 2, pis no longer inL?, sop cannot belong td.? either (since the Fourier
transform is an isomorphism dif). Thus,p cannot belong td.> (asp belongs to
L', then it would belong td.' N L>® ¢ L2, which is a contradiction). Then the
graph ofp is broken by one or more divergencesxto

e Betweernr = 1anda = 2, the transition between the other two regimes has to occur.

For more than one replica, heuristic arguments permit us to say that the main contributions
to the characteristic function behaves liké", independent of the number of replicas. The
volume element behaves liké "*D . By the same arguments used in the case of a single
replica, nowp ({h*}:_,) exhibits a transition which takes place betweer= 1/(n + 1)
anda = 2/(n +1). This is in agreement with the main conclusion obtained in the first
comment.

Thus, we have proved that the joint probability distribution of the replicated fields,
p({ﬁ“ "_,), undergoes a phase transition at a some fimiteRecalling that(p"*1) is
calculated averaginB]”_, [/, f(h%) with this function, it is thus reasonable to think
that the integer moments gf and the MI could exhibit a phase transition caused by the
transition in the own distribution.

(4) Another argument in favour of the existence of a transition is given by the behaviour of the
information capacity. It has been proved [1] that this quantity has a third-order transition
for the deterministic channel. The high order of this transition makes the function rather
smooth and the critical point hard to detect. The information capacity is only an upper
bound of the M, but it is plausible that the latter has a similar behaviour.

These comments lead us to conclude that the Ml undergoes a phase transition. Whatis then
the meaning of the RSA solution? The expansion in powessaffthe RSA solution differs
from that of the exact one at the third order, which is precisely the order of the transition for the
information capacity. Besides, a detailed study of the RSA solution shows that the dependence
of if$4 on« is infinitely smooth: this solution exhibitis no change in its behaviour.

The conclusion is that the completely symmetric ansatz does not provide a wide enough
family of solutions and the maximal Ml is not attained by this ansatz. This explains why the
exact solution is always above the RSA one. So, R8Ams to ba smooth regularization of
the true MI. This would explain why it splits away from the true Ml in a cubic way, supposing
that the latter possesses a third-order transition. On the other hand, the behaviourcabfarge
the RSA solution is consistent with that of the information capacity and of the Ml in a network
with continuous output. Then, itis plausible that the RSA provides a smoothing for MI which
asymptotically has the correct behaviour, but which masks completely the critical point.

8. Further steps: beyond the RSA

We have explored the possibility of breaking the replica symmetry by modifying the ansatz for
U andV (see appendix C). Our first attempt consisted in the usual RSB ansatz. After rather
lengthy calculations this led us to exactly the same solution given by the RSA.
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We also tried what can be called the segregated ansatz (SA), in which the first of the
replicas is split from the other. Then we assume:
Ugo =Uo
U3, =02 =1U; b=1,...,n
UO:UZ a=1...,n

aa

U%, = Us Ya#be{l, ... n)

a

(46)

and analogously fovpt.

Under this ansatz the RS solution verifies again the SP equations. But in addition, an new
infinite set of functions o& appears that also verify the SP equations. The Ml is then given,
at eachw, by the function providing the maximal MI. We observe that at larghis infinity
of solutions contributes below the RSA. However, for arbitrary valuestbe problem is too
complicated to deal with.

9. Conclusions

In this paper we investigated the information processing by a noisy perceptron channel. Our
network hasV real-valued input an@® binary output neurons, which state is determined by
the joint probability distribution of the input and output stafe&, £). We performed the
calculation for a general continuous and bounded transfer function, depending on a noise
parameter. Our study generalizes previous results obtained for deterministic channels [1]
using the replica technique. We also give the explicit expressions for the mutual information
at different asymptotic regimes of the load parameter P/N and the nois¢.

The mutual information per input unit can be decomposed in two piéces; —i». The
second term, which extracts the wrong bits of information (the equivocation), can be calculated
exactly because of the factorization of the probability. The entropicipemore difficult to
compute. Here we computed it by means of the replica technique and analytical methods.

Our main result is that for values efup to some value Q) there exists an exact solution
for i, which we found explicitly (equation (34)). This solutiondgferentfrom the replica
symmetry ansatz solution (equations (27)—(31)). A numerical computation of both solutions
gives the remarkable result that they artremely closéo each other up ta ~ 1 (figure 2).

A small ¢ expansion shows that the two solutions are equal up to the second order. Although
the corresponding Taylor expansions differ above the third order, the numerical agreement up
toa ~ 1is excellent (a relative difference of less tha@% up toe = 0.1). This is due to
intriguing cancellations between higher orders.

Our conclusion is that there exists a critical vaduyeof order one, above which a drastic
change of the mutual information occurs. This signals the appearance of a phase transition.
Above o, the analytical solution is not valid; one of the reasons is that it does not have the
correct largexr behaviour (it violates a bound given by the information capacity). On the
other hand, even if the replica symmetric solution is wrong at smatldoes have the correct
asymptotic behaviour. Our interpretation of the RS solution is that it should be considered
as a smooth regularization of the true mutual information, which is given by the analytical
solution, equation (34), fox < «.. The precise value af. cannot be determined by our
techniques. There is numerical evidence [22] supporting the validity of the analytical solution
and the conjecture that the RSA solution is an excellent interpolation between the small and

T This ansatz is justified because it splits a typicad n box from the matrices, which ax@ + 1) x (n + 1). This
splitting allows the segregated replica to behave independently from the others.
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largea behaviours. The analysis of the origin of the discrepancies between the RSA and the
analytical approaches will be the subject of a future paper.

We have also explored some other schemes beyond the completely symmetric ansatz.
These are based on different types of RSBaressuch as the usual breaking of the symmetry [3]
and the separation of the first replica from the others. In the first case it was shown that the
new solution coincides with the symmetric one. In the second, and because of the complexity
of the problem, we have not been able to give an explicit final result.

Note added in proof Part of this work was presented at the ‘Interdisciplinary Workshop on Neural Networks’,
Wirzburg, Germany, (October '95) and at the ‘Fisica Estadistica’96’ meeting, Zaragoza, Spain (May 1996).
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Appendix A. Calculation of I,

To computel, in the general case, we use again the fact §handfl are deterministically
related, which leads to

P
I = Z/de(J)/d”ﬁp(leJ)H(hi) (1)
i=1

or, in terms of the Fourier transforms of the field distributmiiu) and of H(h;) (p@u|J)
andH” (u;), respectively)

,
I = Z/dJ p() / d" i 5l M (). (48)
i=1

The Fourier transform of the field distribution is computed in appendix B. One has
b)) = e—znZﬁAﬁ' (49)
whereA = JCJ' € Mp, p(Re). After integrating over the in equation (48), we obtain:

,
L=>Y" / d”ii p(ayH" (u;) (50)
i=1

wherep (1) ls the characteristic function wﬂﬁ). Although we cannot calculate the probability
density ofh, we can have an explicit expression for its Fourier transform by comparing
equations (48) and (50). Replacing equation (49) in equation (48) we obtain

1

\/det(Idepr +47T2U®M).

pi) = (51)

Here,

e Idypnp IS the identity matrix in NP dimensions.
¢ ‘X’ stands for the tensor product betweErand M.
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e M = I'C is a constantN-dimensional matrix. Sinck is of order one, T¢M) is also of
order one (Tr stands for the trace).
e U is a P-dimensional matrix defined as the projectorionU),; = u;u;.

Sincep (i) is invariant under similarity transformations df, it can be expressed as

1
i) = (52)
[1}_, /det(Idp. p +4n?m;U)

where{m;},j = 1,..., N, is the set of eigenvalues &. The matrixU has only one
non-zero eigenvalue, which j8|> = u - u and thus:

pid) = o3 INTTL (Lan2m; li2) (53)

The computation off, does not need the whole joint distributir(z) but only the

marginalsp(h;);i = 1,..., P. By permutation symmetry, it is obvious that all of them
are given by the same function. Let us compute for exampte). Its Fourier transform is

plur) = pug, 0, P=¥, 0) = e 2 Ziman (bl ) (54)

and since all the marginals are the same function, all the termsane the same. Theh
reads

L=P f dh p(WYH(h). (55)

So far there is no hypothesis upon the mafvik Particularly interesting is the case in
which all them ; are of the same order, namely, of ord¢Nl(as we have already said, (V)
is O(1)). In this particular case,

p(u) Nzle*%zyzﬂnzmm? +0E V) = o2t o) (56)

whereM = Tr(M). In the thermodynamic limit the term@ ") becomes negligible and
p(h)is:

e—h?/@i)
N2r M .

(Note that this expression makes explicit the reason #hy: O(1).) The conditional output
entropy now is:

Jim p(h) = (67)

IL="P [ N dz ZH(\/ 2M7?). (58)

Appendix B. Computation of p(i@|J) for P > N
We define the Fourier transform of afunctiﬁmﬁ) as the functionf (i1) given by:
Fi) = / dPh F(h)e 2mihi, (59)

The evaluation oﬁ(ii|J) in the caseP < N is simple. This is because for almost every
J the random vectok follows a Gaussian distribution with correlation matdx = JCJ*
and detA) # 0. Then,

pGi|J) = e Zriudi’, (60)

We now prove that this equation is still true wheén> N. Let us first notice that in this
case degtA) is necessarily null, and consequently the random vectemot Gaussian.
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Let us computep (v]J) for the particular vectob = (1,1, ..., 1). Denoting this ag»
we have:

«/det(ZnC l_[f
with h; = Z;V:E Jij€; andu; being its conjugate Fourier variable. FBr> N, the firstN
components oh are independent random variables and the other N depend upon the
former (for almost everyl).

We split the matrixJ into two matrices: K € MNxN(Re) Kjy = Jjy; andL €
Mp_nxn(R€), Lij = Iy j k=1,...,P=N;j=1,.

-

and for almost everyl, K is invertible. Then, we split = (k% h%), i° € Re" and
hl e ReP~N. Moreover,k® is Gaussian-distributed with zero mean and covariance matrix
Ao = KCK', andht = (LK 10,
In this way, we obtaif [/, £(h:) = [17_; fF) TT75" FAELKHAe), and hence
can be written as:

. leo)E P P
p= /d” ° (h,»>=fdf’ﬁﬁ(ﬁu>1"[f(ui) (61)
i=1

e OB = Lo

o= | d¥h h LK Hh™). 62

2 / m]‘[lf( % L[l FAELKE D) (62)

If g(fz) is a function of vectorial argument, anfdx) has real argument, we have that:
(k) f @~ h)" (i) = / de (i — cd) f(c) (63)

where the hat symbol stands for the Fourier transformaiscan arbitrary constant vector. It
should be noted thatis a multidimensional Fourier transform whuféis the one-dimensional
Fourier transform.

Let us denote byl the (P — N) N-dimensional vectors defined by the rowslak 1.
Applying the previous formula to the expression fgrand after using the Bessel-Plancherel
identity, we obtain:

1 E & 7 ™ F
o= [daeriai [arve e[ 70~ X adop [T . 69
j=1 k=1 k=1

Interchanging now the order of integrations and performing the change of varidhles
related viai’ = ii® + Z,f’l’v cxdy, We obtain:

o= fdP e /d” OHf(uo) Hf(ck>

0N = P-N _ =0A 7
Xe72n2(u0Aouo’+ZkAk/:l Cka/dkAodk,+22k:1 ckuOAod,f,). (65)

It is convenient to combin@® and ¢ in a single P-dimensional vectoli = 1, ©).
Expressing equation (65) in terms of this vector, we can use the vefitaossimplify the
bilinear expression in the exponent as:

P
= f dFii e 2ruai [/ A=JCJ' (66)
i=1

that depends only oA. From the right hand side of equation (61) we have
,O(Lt|J) 7271 uAu (67)
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Appendix C. RSA derivation for I

We now derive the SP equations. These are then simplified by using the RSA [3]. The first
order parameters are the overlap of two replicated Fourier transforms of the local field:

1 >
Uab:Fﬁa'ub a,b:O,...,n. (68)

The pre-factor is taken in order to ensure that it is of order one. These are the elements of
a matrixU € M+1)xx+1(Re). Then, the Fourier transform of the joint distribution of the
replicated local fields, equation (24), can be expressed in terms of this matrix as:

1
paan=T] [ dUahf?( ah—;uaub)e FLnelin i, (69)

asbh

Now we introduce an order parame¥ér conjugated td/. To linearize the quadratic form in
theu“ we useP new variablesy;, which are(n + 1)-dimensional vectors.

After substituting equation (69) in equation (26), we can perform the integrals oviéy.the
Since these integrals are the anti-Fourier transforms of(hé), the (p"*1) can be expressed
in terms of the product of the transfer functions simply:

n+1 /n( |P dvab dU )eZTIP Zu<b UabV‘b—% 7:1 Indet [Id(r:+1)x(,,+1)+4ﬂ2mjf]]
ash

e wl(V) w; N

X Hfd"ﬂﬁ
v/ de’[(ZTL'V) a=

This can be written as:

(o) = / [[-iPdv* .,

a<sb

(i =V-1). (70)

@2 P Xacy U V' =3 31y Indet [[d ey wuony +4n* P U+ P In Z(V) (71)
where

—tw(V)" e n a
Z(WV) = /d"”zz _TIr <w—) : (72)

\/det(2r V) a=0 v

In the largeN limit (o« = % fixed), the integrals ovel/ andV in equation (71) can be solved
by the SP method. This gives:

(") ~ 7 (73)
whereU, andVj are the SP values and

N
G=2rP) UsV®—3Y IndetTdgpxms +4m>Pm;Ul+ PIn Z(V). (74)
a<h j=1
The RSAis:
70 70
({fg' Yo a4 and ‘fag Vo a4 (75)
U =u, Ya # b vl =w Va # b.

The starting point is equation (73), where the functiors evaluated with the RSA given
in equation (75). Defining the matrix & M,+1)xn+1(Re) as(1),, = 1Va, b, V can be
expressed as:

= (vo — 3vD)Idgsyxey + 30110 (76)
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and its inverse is:
(‘7)_1 = xoldp+1yxp+y T X111 (77)

11)1

wherexg = andxl —n
(vo— 3v1) (vo+ 301
(equation (72)) |n a more convenient way

Z(V) = @1)"% x5 /xo+ (n+ Dy f o+ @240 Dm0 wi= 2o ) Hf(w INT).

(78)

Notice thatZ(V)) — %asn — 0. We now expan@ (V) uptoorden, Z ~ 1+nh(xo, x1),
h = 0Z/dn|,—o. Up to this order we obtain;

This form of (V) ~* allows us to expresg (V)

1 2 n & 42 Pm juy
G NZ?TP(H+1)U()M()+7TPI’!M1U1— §;(1+47T ij'u())— E;m
_g S NIN(+42Pm;(uo — u1) — PIN2+2Pnh(xo, x1). (79)
j=1

The SP equations extremize with respect to its variables. From the SP equation
9G/dvy = 0 one obtains thatg is linear inn: uy = nia. Replacing equation (79) in
equation (73), and this in equation (22) we have:

N
IlRSA = —27 Pvgil + 7w Pviu + 272 PMii — 2n°PMu + % Z In(1+ 4712iju)
Jj=1

—2Ph(xo, x1) (80)
whereu = —u;. The SP equations are:
Vo = JTM
N m
=27M —2 -
v d n; 1+472Pmju
L (81)
i =——0h/dvg
T
2
u= —0oh/dv;.
T

i is a Lagrange multiplier, that can be easily removed by substituting the valigerof *54.
The evaluation oh(xg, x1) requires some care. We expr@aS'

2(V) = @0 % Vro+ 1+ D / ax [ﬁ( s (82)
where

Lx) = / " duw e ot £ /), (83)
Computing the term ofzno:der of Z we obtain:

h(xo, x1) = _1 In2— % x;;le 7 (x0, x1) (84)
with

M (xo, x1) = f " dee E R (a(0) (85)
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where the functiorf () is defined by:

- 1 1-y
F(y)=zIn
2 1+y

—na- (86)
and its argument is:
g = \/?e%iézz / ™ dw e o0 sinh(/xgzw) £ (w/ /). (87)
Substitutings (xg, x1) given abo_ve in equation (80), we obtain:
IS4 = pPIn2+p /%M(xo, x1) + % ]XN; In (1 +472Pm;u)

1 4712iju

i N 88
244 1+472Pm;u (88)
= .
and the SP equations become:
N
mi
=1 —
o /(n; 1+4712Pm_,-u>
X1 = i_ — X0 (89)

b
2
Xq 0 d Xot+x1 ~
—__ % (2 _ 2 M (xo0, x1) | -
" (2)3/2 <8xo 8x1> |: X0 (xo0 xl):|
We can substitute ii*S* one of the parameters, for examplg Definingx = — Mx;,

s = 4r°Mau and rearranging conveniently equations (88) and (89), we finally obtain
equations (27) and (28).

Appendix D. Analytical derivation of Iy

This exact calculation starts from equation (26). We assume that all the eigenvalues

.....

way from equation (68):

Upp = il - . (90)
These elements are of ord@rand hencenjff is of ordera. p({u”}) is computed as in
section 4.1. Then, the logarithm in the exponent of equation (69) can be expanded around the

identity matrix (which can be done df is less thanﬁ times a geometrical factor of order
one, that depends @)

< 7 2)m m Frm
b({i)) = 1—[ e%(—l) GO Tr(Mm) T ). (91)
m=1
Let us remark thathis is not an approximatian It is an exactderivation valid in a

(undetermined) range of valuef order one We can alternatively write this in the following
form:

o0
Ao _ 9211 n ~a2 1 _aAr2p\m m 7 m
p({ua}) ) 2mM Yo i | | Qn (=4r*M)" N Tr(G") Tr(U/N) ) (92)

m=2

The second factor can now be expanded, leading to polynomials in traces of poweta of
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Given a functionF ({ii}), we now define its average with the transfer function (or shortly,
its transfer-average) as:

<< F >>z\/l—[dP-'a 72712M|M“\2F({—>a})1_[1—[ f(ua) (93)

a=0i=
Notice that

<< 1>»>=2"P0*D (94)

This property comes from the fact thagx) + f(—x) = 1, and sof (x) = 1+a(x) wherea (x)
is an odd function bounded by2 and 1. Notice that, although this will not be required here,
in the physically reasonable case(&) is an increasing and almost everywhere continuous
function, 0< a(x) < 1, x > 0 such that(x) — 1 whenx — oc.

In terms of these transfer-averages, the moments read:

« n+l) 2—P(n+l) +Z Z C;i’,l/\ A?J'_ ,,,, S)L (95)

0=2 2L<s1< <8y,
siftets =0

where
_A+2\0 YA s11)1 STy
Gt =(4L<ﬂ) (Tr[(G)*] ' (Tr[(g) D (96)
S ST 2 s1 sx
and
ALl =< < (T[0T /N .. (TI[O /NP D > . 97)

These transfer-averages have a very simple expression in the thermodynamic limit, what allows
us to rearrange the whole expression in a convenient way. First, we must notice that:

/ du e_Z”ZM"Zuzrf(u) = %50, (98)

becausef(x) = % + a(x) and a(x) is odd. We now prove a factorization property,
equation (103), of the transfer-averages of tracdd tiiat will be useful to computégp™*1).
The trace of theth power ofU can be written as:

TrO") = Z Z uf’lluleul”zzulajufjuff .. uz_':lluz"lui“r"ufl’. (99)
After taking the transfer-average on thls expression, one should notice that the contribution of
each term does not depend on the particular indesede presentinthatterm. Itonly depends
on the number of different variables in the term and the power of each variable. This is due to
the independency and permutation symmetry ofithi is possible to rearrange equation (99),
expressing it as the sum of each different contribution times a combinatorial factor. This factor
is the number of terms giving that particular contribution. Since the contributions themselves
are of order one, the thermodynamical limit is determined by the combinatorial factors. In this
limit, P — oo (r kept finite) and the combinatorial factors scalePasaised to the number of
non-repeated indecés Then, no more than twe can be equal. Defining

A(M) = / " gy e, f) (100)

and considering equation (98) fer= 0 andr = 1, the transfer-average of equation (99) can
be expressed in terms bf

<< THO/N)] == = 277Dy, (101)



1894 A Turiel et al

where
=@ +(=D)'n)2V%a". (102)
By similar arguments, one can prove a useful factorization property. For the product of
two traces we have:
<< Trl(U/N) TI[(U/N)*] >>= 27Dy (103)

and a similar factorization holds for the product of an arbitrary number of traces. Recalling
equation (95), this property allows us to write:

o0

("t = 27D exp[N > %(—4#1\'4)"’ Tr[(G)'"]xm}. (104)

m=1
Substituting the explicit values of thg equation (102), and preforming the sum, we have:
«pn+1» — 27P(n+1)ef% Trin (Idyxy+167%0%n P M)] g 3 Tln (IdeNflﬁnz)LzPM)]. (105)

These moments can be expressed in a more useful way. Defiliyig

k= / " dyye 7 r(/ity) (106)

we haver? = _8;321(4' Using this relation in equation (105), we finally obtain equation (34).

References

[1] Nadal J-P and Parga N 199&twork4 295
[2] Korutcheva E, Nadal J-P and Parga N 19@5twork8 405
[3] Mezard M, Parisi G and VirasorM A 1987 Spin Glass Theory and Beyo(Singapore: World Scientific)
[4] Linsker R 1988Computer21 105-17
[5] Hertz J A, Krogh A and PalnmteR G 1991Introduction to the Theory of Neural ComputatiRedwood City,
CA: Adisson-Wesley)
[6] Laughlin S B 19817. Naturf.C 36 910
[7] NaddJ P and Parga N 199%etwork4 565
[8] Barlow H B 1961Sensory Communicatid®ll7 (Cambridge, MA: MIT Press)
[9] Atick JJ 1992Network3213
[10] Atick JJ and Redlich A 199Rleural Comput4 196
[11] van Hatera J H 1992). Comp. Physiologp 171157
[12] van Hatera J H 1993Vis. Res33257
[13] Treves A 1995). Comput. NeuroscR 259
[14] Schultz S, Panzeri S, RelE T and Treves A 199hformation Theory and the Braied R Baddeley, Pdidiak
and P Hancock (Cambridge: Cambridge University Press)
[15] Schultz S and Treves A 19%hys. ReE 57 3302-10
[16] Linsker R 1993eural Inf. Process. Sys.953
[17] SchusteH G 1992Phys. RevA 462131
[18] Shanna C E and Weaver W 194Bhe Mathematical Theory of Communicatigbsbana, IL: University lllinois
Press)
[19] Blahu R E 1988Principles and Practice of Information Theof€ambridge MA: Adisson-Wesley)
[20] Cove T M and Thoma J A 1991Elements of Information Theo(iNew York: Wiley)
[21] Rudin W 1974Real and Complex Analysblew York: McGraw—Hill)
[22] Domingue D R C,Maravall M, Turiel A, Ciria J C and Parga N Numerical simulation of a binary communication
channel: Comparison between a replica calculation and an exact sdfwiiophys. Lettsubmitted



